A 31-year-old Malay Indonesian female patient who was a nonsmoker and had no family history of cancer was admitted to the emergency ward with worsening breathlessness accompanied by wheezing since 1 week prior. The patient also had recurring hemoptysis, which started 2 years before and worsened in the past 6 months. Previously, she received antituberculosis treatment for 6 months, along with inhaled long-acting bronchodilator and steroid therapies. However, no clinical improvement was observed.
Upon physical examination, severe dyspnea with stridor and decreasing vesicular breath sounds in the left lung were found. Chest radiography and computed tomography (CT) performed 1 week earlier revealed a mass on the left main bronchus (Fig. 1A, E) and segmental atelectasis of the left lung (Fig. 1C), with infiltrates in segments 1, 2, and 3 of the left lung, along with consolidation in the left inferior lobe and narrowing of the main left bronchus.
The multidisciplinary medical team decided that the case was inoperable due to the large tumors, severe central airway obstruction, and large lung involvement; thus, therapeutic bronchoscopy was the best feasible treatment plan for the patient. After discussing with the patient and her family, 3 days after the patient’s admission, the medical team decided to perform bronchoscopic examination and tracheobronchial mass removal through rigid bronchoscopy. Lobulated masses obstructing almost the entire distal tracheal lumen up to the carina and the entire left main bronchus lumen were found on bronchoscopy (Fig. 2A). A neodymium-doped yttrium-aluminum-garnet laser was used first to facilitate mass shrinkage. After the laser treatment, mechanical debulking using a rigid scope was performed. Intraprocedure bleeding was managed with argon plasma coagulation (APC) through posttherapeutic bronchoscopy. The tracheal and carinal lumens were opened to > 50% of their diameter, with the left main bronchus lumen opened only slightly (Fig. 2B). After bronchoscopic mass removal, the patient was stable, and no stridor was found. The dyspnea was relieved with 96–98% peripheral oxygen saturation in room air.
Pathological examination using hematoxylin–eosin staining confirmed the presence of a tumor mass with solid islets and a cribriform structure. The tumor cells had relatively uniform and basaloid nuclei. Mitosis was rarely found. The bronchial mucosa was visible above the surface of the tumor, and no perineural invasion was found (Fig. 3A, B). The pathological diagnosis was therefore concluded to be grade 2 adenoid cystic carcinoma. Molecular or cancer-related genetic testing and immunohistochemical staining to confirm the diagnosis were not performed because of insurance limitations.
Definitive intensity-modulated radiotherapy (IMRT) targeting the tracheobronchial mass, including the distal trachea, carina, and left main bronchus as gross tumor volume (GTV), was commenced 2 weeks after the therapeutic bronchoscopy. The clinical target volume (CTV) was GTV + 1 cm, and the planning target volume was CTV + 0.5 cm. The total dose plan amounted to 60 Gy, but the radiation dose could be delivered at 40 Gy and administered in 20 fractions of 2 Gy. After 20 fractions of radiation over 4 weeks, the patient developed esophagitis and dysphagia. Positioning the patient with thermoplastic masks was difficult because of mucous hypersecretion and persistent coughing. Two weeks after the radiotherapy series, the patient received a chemotherapy regimen consisting of carboplatin with an area under the curve of 5 and paclitaxel 175 mg/m2, given three times weekly for a total of six cycles. The patient tolerated the treatment well and did not experience any toxicities.
Two months after completion of the treatment, the patient had no dyspnea. In reevaluation by chest CT scan, no mass in either lung or the mediastinum and no lymph node enlargement were visible (Fig. 1D). The trachea and main bronchi were normal (Fig. 1B, F). Bronchoscopy also revealed no mass and only slight malacia (Fig. 3C). Finally, the patient was planned to undergo routine evaluation by thoracic CT scan every 3–6 months. Figure 4 shows the patient’s treatment and follow-up timelines.