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CASE REPORT

An assessment of esophageal balloon use 
for the titration of airway pressure release 
ventilation and controlled mechanical 
ventilation in a patient with extrapulmonary 
acute respiratory distress syndrome: a case 
report
Óscar Arellano‑Pérez1,3* , Felipe Castillo Merino1,2, Roberto Torres‑Tejeiro1,2 and Sebastián Ugarte Ubiergo1,4,5 

Abstract 

Background: Esophageal pressure measurement is a minimally invasive monitoring process that assesses respira‑
tory mechanics in patients with acute respiratory distress syndrome. Airway pressure release ventilation is a relatively 
new positive pressure ventilation modality, characterized by a series of advantages in patients with acute respiratory 
distress syndrome.

Case presentation: We report a case of a 55‑year‑old chilean female, with preexisting hypertension and recurrent 
renal colic who entered the cardiosurgical intensive care unit with signs and symptoms of urinary sepsis second‑
ary to a right‑sided obstructive urolithiasis. At the time of admission, the patient showed signs of urinary sepsis, a 
poor overall condition, hemodynamic instability, tachycardia, hypotension, and needed vasoactive drugs. Initially 
the patient was treated with volume control ventilation. Then, ventilation was with conventional ventilation param‑
eters described by the Acute Respiratory Distress Syndrome Network. However, hemodynamic complications led to 
reduced airway pressure. Later she presented intraabdominal hypertension that compromised the oxygen supply and 
her ventilation management. Considering these records, an esophageal manometry was used to measure distend‑
ing lung pressure, that is, transpulmonary pressure, to protect lungs. Initial use of the esophageal balloon was in a 
volume‑controlled modality (deep sedation), which allowed the medical team to perform inspiratory and expiratory 
pause maneuvers to monitor transpulmonary plateau pressure as a substitute for pulmonary distension and expira‑
tory pause and determine transpulmonary positive end‑expiratory pressure. On the third day of mechanical respira‑
tion, the modality was switched to airway pressure release ventilation. The use of airway pressure release ventila‑
tion was associated with reduced hemodynamic complications and kept transpulmonary pressure between 0 and 
20  cmH2O despite a sustained high positive end‑expiratory pressure of 20  cmH2O.
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Introduction
Esophageal pressure (Pes) measurement is a minimally 
invasive monitoring method used to assess respira-
tory mechanics in acute respiratory distress syndrome 
[1]. Pes tracings can be used to understand, define, and 
individually assess the physiopathological mechanisms 
of respiratory insufficiency and monitor the patient’s 
clinical progression [1]. The first generation of custom-
ized esophageal balloons was mainly used for research 
purposes. Over the past decade, several kinds of sec-
ond-generation balloons have been developed and are 
currently available for clinical use [1]. Esophageal bal-
loon catheters can be connected to specific monitoring 
devices, such as pressure ports, mechanical ventilator 
accessories, or multiparametric monitor pressure trans-
ductors [1]. This kind of additional information can be 
useful in the case of pathologies such as acute respira-
tory distress syndrome (ARDS), which is characterized 
by acute respiratory insufficiency with bilateral shad-
owing on thorax X-rays, pulmonary edema that can-
not be completely explained by cardiac insufficiency 
or excess lung liquid, and hypoxemia with a  PaO2/
FiO2 ratio < 300 with positive end-expiratory pressure 
(PEEP) higher or equal to 5   cmH2O [2]. Despite the 
usefulness of esophageal pressure monitoring, clinical 
reports are still scarce, and its use in unconventional 
modalities is experimental and mainly used in research. 
To better clarify the usefulness of Pes measurements in 

a clinical context, we will assess the technical, physio-
logical, and clinically relevant details of this monitoring 
method to facilitate an improved understanding of the 
information provided by bedside Pes measurements.

Airway pressure release ventilation (APRV) was 
first described and introduced to clinical practice over 
20 years ago and was made commercially available by the 
mid 1990s [3, 4]. It is a relatively new positive pressure 
ventilation modality and has a series of advantages over 
low tidal volume assisted ventilation in ARDS patients 
[5]. Its benefits are mainly related to spontaneous res-
piration, which improves both patient–ventilator syn-
chronization and the ventilation-to-perfusion ratio, thus 
improving gas distribution into dependent lung regions 
[6].

Case study
The patient was a 55-year-old chilean female, with pre-
existing hypertension and recurrent renal colic who 
entered the cardiosurgical intensive care unit (ICU) 
with signs and symptoms of urinary sepsis secondary to 
a right-sided obstructive urolithiasis. Upon admission, 
the patient showed signs of urinary sepsis, a poor overall 
condition, hemodynamic instability, tachycardia, hypo-
tension mean arterial pressure (MAP) 70, and required 
vasoactive drugs. A general physical examination showed 
signs of consciousness and a Richmond Agitation–Seda-
tion Scale (RASS) score of −1 to 0. The patient had pete-
chiae on her upper torso and lower limbs; an apparently 

Conclusion: The application of this technique is shown in airway pressure release ventilation with spontaneous 
ventilation, which is then compared with a controlled modality that requires a lesser number of sedative doses and 
vasoactive drugs, without altering the criteria for lung protection as guided by esophageal manometry.

Keywords: Mechanical ventilation, ARDS, Transpulmonary pressure, Esophageal balloon

Table 1 Patient description

Age 55 years old

Sex Female

Weight 76 kg

Height 162 cm

Body mass index 29

APACHE II (score) 19

ICU stay (days) 14

Days under invasive mechanical ventilation 7

Days under invasive mechanical ventilation with esophageal balloon 5

Days under deep sedation at ICU 6

Day consciousness was regained 6

First day of sitting on the edge of the bed 7

First day standing 7

Scale for muscle strength (Medical Research Council Sum Score) regaining consciousness 30
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painless globular, soft, and depressible abdomen; a 
medial laparotomy scar; and a left lumbotomy scar. The 
APACHE II (first 24 hours) score was 19 (Table 1; Fig. 1).

Initial ventilation management
The patient was treated with volume control ventilation. 
A lung recruitment maneuver was performed following 
a first arterial blood gas test (ABGs) (Table 2, Day 0, first 
rounds), as oxygenation following the intervention was 
inadequate (Table 2, Day 1, first rounds), with the highest 
PEEP being 20   cmH2O. Until day 2, ventilation was vol-
ume controlled with conventional ventilation parameters 
described by the Acute Respiratory Distress Syndrome 
Network (ARDSNet) [2]. However, pressure on the air-
way was reduced owing to hemodynamic complications 
(Table 2, day 1 first round to day 2 fourth round).

Transpulmonary pressure monitoring 
under controlled ventilation
During the patient’s second day on mechanical ventila-
tion, she showed intraabdominal hypertension [intraab-
dominal pressure (IAP) 18 mmHg] that compromised the 
oxygen supply and her ventilation management (Table 2, 
day 2, second and third rounds). Consequently, an esoph-
ageal manometry was taken to measure lung distention 
[that is, transpulmonary pressure (TPP); 7] and protect 
the patient’s lungs. Initial use of the esophageal balloon 
volume-controlled in deep sedation allowed the medi-
cal team to perform inspiratory and expiratory pause 
maneuvers to monitor transpulmonary pressure during 
end inspiration (PLend-insp) and transpulmonary pres-
sure during end expiration (PLend-exp) (Table  3, Day 
2, fourth and fifth rounds). In line with the literature 

on esophageal manometry catheter use, our aim was to 
attain a PLend-insp below 20  cmH2O, as part of the lung 
enters full regional pulmonary capacity at this point [8].

Catheter insertion with an esophageal balloon
The AVEA (Care Fusion) ventilator’s esophageal manom-
etry system was used, following a test of the balloon and 
pressure measurement calibration. The catheter was 
then inserted through the nasal passage to approximately 
55 cm, in line with the available literature [9], until reach-
ing optimum gastric position, before being inflated to a 
suitable volume so measurements would remain unal-
tered. The catheter’s intragastric placement was checked 
by means of positive pressure deviation under gentle 
external manual epigastric compression [1]. The balloon 
was then removed until cardiac activity was visible in the 
esophageal pressure reading, indicating that the pres-
sure measuring location was in the bottom third of the 
esophagus. Since the Pes measurement [7] did not seem 
to be significantly affected by the presence of a nasogas-
tric tube, the patient was also given a nasojejunal probe. 
An occlusion test (Baydur test) [10] was performed to 
determine the accurate measurement of the esophageal 
balloon.

A 20  cmH2O PEEP was initially established to maintain 
a 0 and 2   cmH2O PLend-exp (Fig.  2). However, hemo-
dynamic deterioration made it necessary to establish a 
PEEP of up to 16  cmH2O, leading to a −2 and −1 PLend-
exp (Figs. 3, 6A).

Monitoring transpulmonary pressure in APRV
On the third day of mechanical ventilation, the modal-
ity was switched to APRV (PEEP high of 20   cmH2O 
and low of 10   cmH2O, peak timing of 3.1  seconds, 

Fig. 1 A Thoracic X‑ray on first day in intensive care unit / B Thoracic X‑ray on third day in intensive care unit
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0.6 seconds expiratory time, 16 revolutions per minute 
mandatory respiratory frequency, and 80%  FiO2), which 
allowed for lower sedation levels, from –5 to −3 RASS, 
from the suspension of continuous midazolam infusion 
(Fig. 4).

The decision to use the APRV modality was related 
to an improvement in cardiac function, a rise in the 
cardiac index to above 4.1  L/minute/m2 even after 
suspending dobutamine infusion (Fig.  5B), and hemo-
dynamic improvement. This allowed for the suspen-
sion of continuous noradrenaline infusion, while 
levels of indexed systemic vascular resistance were kept 

between 1070 and 1860  dinas-seg-m2/cm5 (Fig.  5A). 
The indexed intrathoracic blood volume during APRV 
varied between 999 and 1335 ml/m2.

As described above, during controlled ventilation 
in parallel with hemodynamic complications, it was 
not possible to titrate the necessary PEEP to main-
tain transpulmonary pressure above 0   cmH2O (Fig.  3). 
However, the use of APRV was associated with reduced 
hemodynamic complications (Fig. 5) and kept the PLend-
exp between 0 and 20   cmH2O despite a sustained PEEP 
high of 20  cmH2O (Fig. 6).

Following the start of Pes monitoring and APRV, the 
patient’s  PaO2,  PaO2/FiO2 ratio, and oxygenation index 
all varied less than they had under the controlled modal-
ity (Fig.  7). The P-high was adjusted to 2   cmH2O over 
plateau pressure and was adjusted according to the ven-
tilatory graph, keeping transpulmonary pressures under 
15  cmH2O. The P-low was adjusted according to the ven-
tilatory graph, always maintaining transpulmonary pres-
sures above 2  cmH2O. Pressure support was titrated to 
keep the spontaneous volume mobilized on the P-high 
close to 20% of its release volume, using the esophageal 
pressure graph to verify that it did not rise above 20 
 cmH2O of transpulmonary pressure.

Weaning
On the seventh day of mechanical ventilation, the patient 
was in the appropriate condition to initiate supported 
weaning (CPAP with added support pressure), using 
11  cmH2O mean airway pressure (Table 4, day 6). Under 
these conditions, a low-support spontaneous ventilation 
test was conducted, showing a rapid shallow breathing 
index (RSBI) of 34 and 57, a negative inspiratory force 
(NIF) of –27   cmH2O, and airway occlusion pressure in 
the first 100 milliseconds (P0.1) of –2  cmH2O, alongside 
the application of a negative cuff leak test. Considering 
these indicators, the patient was extubated with no com-
plications, and weaning was consolidated with the sup-
port of a high-flow nasal cannula. Once weaning was 
consolidated, the patient was taken to the intermediary 
care unit.

Discussion and conclusions
Although there is a general agreement on the reduction 
of tidal volume, plateau pressure, and driving pressure as 
key objectives of pulmonary care [2], the most adequate 
way to determine positive end-expiratory pressure is still 
debated, as it has been for decades [11].

There have been cases where healthy animals have 
suffered ventilator-induced lung injuries (VILI) when 
ventilation produces pulmonary overdistention [12]. 
Although it is rare to reach such scores in clinical prac-
tice, note that in ARDS a substantial region of the lung 

Fig. 2 Mechanical ventilation programming on the first day the 
esophageal balloon was installed. Patient shows intraabdominal 
hypertension (18 mmHg IAP)

Fig. 3 Mechanical ventilation programming during day 1 
of esophageal balloon use. Patient presents intraabdominal 
hypertension with 18 mmHg IAP (previous 16 PEEP setting was 
insufficient)
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is heterogeneous, inducing stress and involving the dou-
bling of locally applied pressure as a possible side effect 
[1]. Although this is noteworthy and requires consid-
eration when titrating mechanical ventilation, benefi-
cial effects have been reported in several clinical studies 
when sufficient PEEP was used to drive transpulmonary 
pressure at the end of the expiration from a negative 
(indicating the closure or collapse of expiration) to a pos-
itive transition (indicating sustained permeability in this 
zone) [13]. In the present case, PEEP titration aimed to 
achieve these objectives (Table 3, day 2, fifth round).

In other cases, the use of an esophageal balloon has 
been criticized since it does not directly measure pleural 
pressure in distant pulmonary regions. Yet results from a 
recent study indicate that esophageal pressure is reliably 
close to absolute pleural pressure throughout its isogravi-
tational plane [14]. In addition to the above, the restric-
tive component of the thoracic cage is increased by the 
weight of abdominal and thoracic adipose tissue (BMI 
29), exposing the need to investigate the contribution of 
thoracic elasticity to lung mechanics.

On the third day of mechanical ventilation, the patient 
was transferred to APRV, due to the potential benefits 
shown in a randomized clinical trial [15] and based on 
empirical results at our center. This modality main-
tains spontaneous respiration, and esophageal pressure 
screening in SDRA patients can be relevant, since defi-
cient or excessive spontaneous force levels can lead to 

lesions on the lungs and diaphragm [16]. Secondly, cal-
culated transpulmonary pressure is a useful indicator for 
clinicians to spot excessive spontaneous force-induced 
damage [17], which can worsen lesions [18]. Further-
more, when spontaneous effort toward the end of the 
inspiration takes place with considerable muscle relaxa-
tion, transpulmonary pressure can reveal transalveolar 
pressure (namely, the component for alveolar expansion) 
[7]. Figure  4 shows indicators for transpulmonary pres-
sure below 20  cmH2O in APRV, which means that alveo-
lar distention is even lower, despite maintaining a PEEP 
high of 20  cmH2O.

A recent case report on the usefulness of esophageal 
manometry during APRV implementation concludes that 
if transpulmonary pressure during release is unknown, 
then programming is being done blindly without know-
ing the frequency of alveolar collapse, as the report shows 
a transpulmonary pressure drop to below 0  cmH2O dur-
ing expiration [19]. In our study, the use of APRV did not 
show transpulmonary pressure drops below 0   cmH2O, 
maintaining the pulmonary recruitment targets with 
esophageal manometry (Fig.  4). This also allowed the 
team to maintain stable oxygenation targets without con-
siderable alterations, as had occurred prior to the use of 
esophageal manometry, and achieve even greater stability 
during APRV (Fig. 7).

APRV requires spontaneous respiratory cycles and, 
as such, is associated with lower sedation levels. In this 

Fig. 4 Sedation. Doses of dexmedetomidine, fentanyl, midazolam, and rocuronium bromide, and ventilation modality. AC/VC volume‑controlled 
assisted modality, AC/PC pressure‑controlled assisted modality, APRV airway positive pressure release ventilation, Pes esophageal pressure
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Fig. 5 Hemodynamic monitoring via thermodilution (PiCCO System). A Vasoactive drug dosage (adrenaline and noradrenaline) and indexed 
systemic vascular resistance trends. B Cardiac index trend. AC/VC volume‑controlled assisted modality, AC/PC pressure‑controlled assisted modality, 
APRV airway positive pressure release ventilation, Pes esophageal pressure
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study, APRV use required the suspension of continuous 
midazolam infusion, raising the RASS from −5 to −3, 
while maintaining the administration of dexmedetomi-
dine and fentanyl (Fig. 5). The reduction in sedation was 
related to improvements in the hemodynamic profile 

parameters, likely due to an adrenergic rise and the spon-
taneous cycles that lead to intrathoracic pressure varia-
tion. The latter could cause increased venous return and 
preload, which can manifest itself in indexed intratho-
racic blood volume from 999 to 1335 ml/m2. This allowed 
for the suspension of continuous noradrenaline infusion 
while maintaining indexed systemic vascular resistance 
scores between 1070 and 1860  dyne seconds/m2/cm5 
(Fig.  6A) and cardiac index scores above 4.1  L/minute/
m2 even after discontinuing dobutamine (Fig. 6B). These 
results are in line with the benefits described in the avail-
able literature on APRV use [6].

Asynchrony can worsen pulmonary lesions, as is the 
case in a “double trigger” event, where two consecutive 
inspirations are taken after a single respiratory effort [20], 
thus doubling supplied tidal volume (TV). Double trigger 
cases are more frequent in patients with a greater respira-
tory impulse [21]. The adverse impact of asynchrony in 
patients on a ventilator is becoming more widely recog-
nized, and the literature suggests a link between the rise 
of asynchrony and mortality [22]. Conventional pres-
sure and flow monitoring over time can hide much of the 
interaction between patients and respirators, but esopha-
geal pressure data can help detect asynchrony more eas-
ily [7]. Hence, careful monitoring of patient/ventilator 

Fig. 6 Mechanical ventilation programming during day 2 of 
esophageal balloon use. Airway positive pressure release ventilation 
modality with esophageal balloon

Fig. 7 PaO2 trend,  PaO2/FiO2 ratio, oxygenation index ventilatory modality. AC/VC volume‑controlled assisted modality, AC/PC pressure‑controlled 
assisted modality, APRV airway positive pressure release ventilation, Pes esophageal pressure
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interaction can help determine mechanical ventilation 
programming and sedoanalgesia levels [7]. Figure  4 
shows that all the patient’s spontaneous efforts (negative 
deflection in the transpulmonary and esophageal pres-
sure curve) are accompanied by supported ventilation or 
APRV mandatory cycles.

There is a growing need for research on APRV configu-
ration considering its increased use. Since APRV involves 
spontaneous cycles, it allows for reduced sedation levels, 
improving adrenergic activity and diminishing vasoac-
tive drug requirements (Figs. 5, 6). This report shows the 
usefulness of mechanical ventilation programming for 
lung protection using transpulmonary pressure monitor-
ing. The report also suggests the usefulness of invasive 
mechanical ventilation Pes monitoring, both in con-
trolled modalities and those allowing spontaneous respi-
ration, such as APRV.

It is important to note that the patient’s overall medi-
cal condition, hemodynamic compromise, and the conse-
quent fluctuating sedation levels did not allow the team 
to maintain a single ventilating modality and a steady 
programming, which in turn would have allowed for a 
more complete temporal assessment and description of 
Pes monitoring. Additionally, there was no continuous 
quantification of esophageal catheterization indicators 
in modalities that allow spontaneous respiration, and 
they were merely monitored. Their quantification can be 
established by directly measuring the Pes and Ptp pres-
sure/time curve. However, these data were not recorded, 
and as such, the study only exemplifies their usefulness in 
APRV.

This report describes Pes monitoring in different 
modalities. Further studies are required to better under-
stand its use in patients who require the titration of their 
mechanical ventilation programming, both in controlled 
modalities and those allowing spontaneous respiration. 
However, it is necessary to perform introduction, calibra-
tion, and corroboration techniques to adequately posi-
tion the esophageal balloon, both through gentle external 
manual epigastric compression [1], and occlusion or Bay-
dur tests [10].
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