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Clinical motion analyses over eight
consecutive years in a child with crouch
gait: a case report
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Abstract

Background: This case report provides a unique look at the progression of crouch gait in a child with cerebral
palsy over an 8-year time period, through annual physical examinations, three-dimensional gait analyses, and
evaluation of postural balance. Our patient received regular botulinum toxin-A injections, casting, and physical
therapy but no surgical interventions.

Case presentation: A white American boy with spastic diplegic cerebral palsy was evaluated annually by clinical
motion analyses, including physical examination, joint kinematics, electromyography, energy expenditure, and
standing postural balance tests, from 6 to 13 years of age. These analyses revealed that the biomechanical factors
contributing to our patient’s crouch gait were weak plantar flexors, short and spastic hamstrings, moderately short
hip flexors, and external rotation of the tibiae. Despite annual recommendations for surgical lengthening of the
hamstrings, the family opted for non-surgical treatment through botulinum toxin-A injections, casting, and exercise.
Our patient’s crouch gait improved between ages 6 and 9, then worsened at age 10, concurrent with his greatest
body mass index, increased plantar flexor weakness, increased standing postural sway, slowest normalized walking
speed, and greatest walking energy expenditure. Although our patient’s maximum knee extension in stance
improved by 14 degrees at 13 years of age compared to 6 years of age, peak knee flexion in swing declined, his
ankles became more dorsiflexed, his hips became more internally rotated, and his tibiae became more externally
rotated. From 6 to 9 years of age, our patient’s minimum stance-phase knee flexion varied in an inverse relationship
with his body mass index; from 10 to 13 years of age, changes in his minimum stance-phase knee flexion paralleled
changes in his body mass index.

Conclusions: The motor deficits of weakness, spasticity, shortened muscle-tendon lengths, and impaired selective
motor control were highlighted by our patient’s clinical motion analyses. Overall, our patient’s crouch gait improved
mildly with aggressive non-operative management and a supportive family dedicated to regular home exercise.
The annual clinical motion analyses identified changes in motor deficits that were associated with changes in the
child’s walking pattern, suggesting that these analyses can serve to track the progression of children with spastic
cerebral palsy.
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Background
Crouch gait is one of the most common gait disorders
among children with spastic cerebral palsy (CP) [1]. It is
characterized by excessive flexion of the hip, knee, and
ankle during stance [2]. The specific causes of crouch
gait vary among individuals, but the primary biomechan-
ical contributors include short and/or spastic hamstrings
[3], short hip flexors [4, 5], weak hip and knee extensors
[6], weak ankle plantar flexors [7], and/or malrotation of
the femur, tibia, and foot [8, 9]. Poor selective motor
control and poor balance also contribute to gait deficits
[10, 11]. With each progressive degree of knee flexion
during stance there is a proportional increase in the de-
mand on the knee extensors [12]. Thus, individuals with
CP and crouch gait commonly exert more energy while
walking than their peers [13, 14] and are at an increased
risk for joint pain and degeneration, formation of bony
deformities, and loss of independent gait [15–18].
It has been posited that crouch gait worsens with age

due to increased body size and weight [14, 19, 20]. How-
ever, few studies have documented the progression of gait
with age among children with CP treated non-surgically
[20–23], and even these studies did not focus specifically
on crouch gait and were limited to two time points. The
purpose of this paper was to report the progression of
crouch gait with non-surgical treatment through clinical
motion analysis, which included joint kinematics, surface
electromyography (EMG), and energy efficiency during
gait, physical examination, and postural balance, in a sin-
gle individual over 8 years. We further aimed to highlight
the contributions of the motor deficits associated with
spastic CP (that is, muscle weakness, shortened muscle-
tendon lengths, spasticity, and impaired selective motor
control) to crouch gait.

Case presentation
A 6-year-old white American boy with a diagnosis of
spastic bilateral CP, Gross Motor Function Classification
System (GMFCS) [24] level I was referred to our clinical
motion analysis laboratory. Our patient was born full
term, with no history of epilepsy and no noted
Table 1 Treatments received by our patient and the age at which t

Treatment Age (years)

6 6.5 7 7.5 8

BoNT-A Hamstrings (bilateral) * * *

Gastrocnemius (right) * * *

Gastrocnemius (left) * *

Psoas (bilateral)

Rectus femoris (right)

Casting Long leg (bilateral) * *

Serial (right ankle) * *

BoNT-A botulinum toxin-A injections
disturbances of sensation, perception, cognition, com-
munication, or behavior. He received annual evaluations
in the same laboratory for 8 years from ages 6 to 13
years. At each visit a physical examination and video
analysis were performed, and our patient underwent in-
strumented three-dimensional gait analysis, including
kinematics and dynamic surface EMG, as well as postural
standing balance tests and analysis of his energy efficiency
during gait. His treatment schedule of botulinum toxin-A
injections (BoNT-A) and casting are displayed in Table 1.
Our patient was referred and treated by a physician at an
outside hospital.
Treatments listed for the whole year were adminis-

tered 2–10 weeks after the annual gait analysis was per-
formed. Treatments listed for the half year occurred at
least 3 months prior to the subsequent gait analysis. For
example, a gait analysis was performed at age 8; less
than 10 weeks after this gait analysis, our patient re-
ceived BoNT-A injections to his bilateral hamstrings and
right gastrocnemius with long leg casting; approximately
6 months later at age 8.5 years, our patient had serial
casting at his right ankle. Our patient received 300 units
of BoNT-A at each treatment age, with the exception of
age 10.5 years when he received 200 units of BoNT-A. The
BoNT-A injections and long leg casting were performed
under general anesthesia.
During the study interval, our patient participated in a

wide variety of sports, including tennis, swimming, ski-
ing, and horseback riding. He occasionally wore ankle-
foot orthoses. His family reported he had an intensive
home exercise program of stretching and strengthening
exercises for the trunk and legs, as instructed in physical
therapy; his father helped him with the exercise program
to facilitate adherence.

Assessments
At each visit to the clinical motion analysis laboratory,
our patient’s body mass index (BMI) was calculated.
Because BMI is both age-specific and sex-specific for
children, the BMI-for-age percentile for boys was used
to interpret his BMI [25]. His leg length was measured
reatments were administered

8.5 9 9.5 10 10.5 11 11.5 12 12.5

* * * * * * *

* * * * * * *

* *

* *

*

* * * * * *

*
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supine from the anterior superior iliac spine to the medial
malleolus. Hip, knee, and ankle passive range of motion
(ROM) measures were recorded and muscle strength
was measured using the six-point (0–5) Manual
Muscle Test [26, 27]. At age 13 years, our patient’s
selective motor control was tested using the recently
introduced Selective Control Assessment of the Lower
Extremity (SCALE) tool [28].
Three-dimensional kinematics were collected during

barefoot walking with an eight-camera optoelectric system
(Motion Analysis Corporation, Santa Rosa, CA, USA).
The Gait Deviation Index (GDI) was calculated from
lower extremity kinematics [29], and his medial ham-
strings’ muscle-tendon length and lengthening velocity
were calculated using SIMM (MusculoGraphics, Inc.,
Chicago, IL, USA) [30]. Surface EMG was collected for
his bilateral rectus femoris, lateral quadriceps, medial
hamstrings, medial gastrocnemius, and tibialis anterior
using the MA-200 EMG system (Motion Lab Systems,
Inc., Baton Rouge, LA, USA). EMG and foot switch
data were processed using EMG Analyzer software (B&L
Engineering, Santa Ana, CA, USA).
Standing postural balance measures of center of pres-

sure path length and average radial displacement were
collected, as previously reported [31]. The energy effi-
ciency index (EEI) was recorded during a 2-minute walk
at a patient-selected comfortable walking speed and
measured in heartbeats per meter walked, as previously
reported [32].
The same experienced physical therapist and bioengineer

conducted the clinical motion analysis every year. After
each session, the results were presented to a multidisciplin-
ary clinical team and recommendations for treatment were
made. Treatment recommendations were then sent to our
patient’s referring physician at an outside hospital. Our pa-
tient’s parents provided informed consent for the presenta-
tion of data for scientific publication. The Institutional
Review Board deemed the report exempt from review and
approval, as the report did not meet the definition of
“Human Subjects Research.”

Outcomes
Physical examination
Our patient’s height and weight increased linearly at an
average rate of 5.2 cm/year and 2.4 kg/year, respectively,
which is slightly below the average rate of height and
weight growth for a typically developing male in the
USA [33]. His BMI remained within the range of 14.6 to
16.7 kg/m2 (Fig. 1a, b), peaking at age 10.
Notable ROM measures, including any muscle con-

tractures, are listed in Table 2. All muscles tested were
strong (5/5), excepting the hip abductors (4/5) and ankle
plantar flexors (3/5 for ages 6–8 years and 2/5 for ages
9–13 years).
Based on results of the SCALE at age 13, selective motor
control was moderately impaired on his right (5 out of 10
possible points) and mildly impaired on his left (8 out of
10 points). Selective motor control was normal for his
right hip and left hip, knee, and ankle. His right knee,
ankle, and subtalar joints and left subtalar and toe joints
had impaired selective motor control, while his right toe
joints had no selective motor control.

Gait analysis: temporal-spatial parameters, kinematics, and
electromyography
His mean GDI improved from 59 to 68 between ages 6
and 13 (Fig. 1c) but remained well below the mean for
unimpaired gait (mean 100, SD 10).
From 6 to 13 years of age, his stride length (normal-

ized to leg length) decreased from 1.29 to 1.18, cadence
decreased from 131 to 111 steps/min, and single-limb
support on the right decreased from 42.4 % of the gait
cycle at age 6 to 36.2 % at age 13. Single-limb support
on his left remained relatively constant. His step width
normalized to leg length was greatest at age 6 (0.25), while
double-limb support was greatest at age 13 (24 % of the
gait cycle).
Our patient’s gait kinematics are displayed in Fig. 2 for

his right side. Gait kinematics on his left were similar,
though slightly less impaired than those on his right. Al-
though our patient’s gait kinematics varied over the years,
there were general kinematic patterns, as outlined below:

Pelvis: His pelvis was held in a posture of rotation to
the left with left upward pelvic obliquity throughout
the gait cycle. There was “double-bump” pelvic
anteversion during the gait cycle.
Hip: Hip flexion and extension were nearly within
normal limits (WNL) through the gait cycle. His right
hip rotated internally during stance. His left hip was
internally rotated through the gait cycle, secondary to
the retracted pelvis on the ipsilateral side. His right hip
was abducted and his left hip was adducted with
respect to the oblique pelvis.
Knee: At initial contact, his knees were flexed, right
more so than left. There was reduced knee extension in
midstance, right more so than left. Peak knee flexion
during swing was reduced on his left, and reduced and
delayed on his right. His tibiae were externally rotated.
Ankle: His ankles were slightly plantar flexed at initial
contact, with peak dorsiflexion generally occurring in
loading response. His right foot progression angle was
WNL, while his left foot progression angle was slightly
internally rotated during stance.

His maximum stance-phase knee extension for ages
6–13 years is displayed in Fig. 1d. In general, his maximum
knee extension in stance improved from 6 to 9 years,
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Fig. 1 Key outcome measures. a Height and weight with the average growth rate indicated by dashed lines; b body mass index (BMI), with the
50th, 25th, and 5th BMI-for-age percentiles for boys; c the Gait Deviation Index; and d maximum stance-phase knee extension. Postural balance
measures of e path length and f average radial displacement (ARD), during the eyes open testing condition. Path length represents the distance
traveled by the center of pressure centroid per second, while ARD represents the radial deviation of the center of pressure centroid relative to
the mean centroid location. g Energy expenditure as measured by the energy expenditure index (EEI) during a 2-minute walking test; and h self-selected
walking speed. All values are presented for ages 6 to 13 years

Butler et al. Journal of Medical Case Reports  (2016) 10:157 Page 4 of 10
worsened at age 10, improved from 11 to 12 years, and
worsened again at age 13.
Peak knee flexion in swing declined gradually from 6

to 13 years (Fig. 2): on the right from 70° to 45°, and on
the left from 62° to 51°, with the most notable decline
occurring after age 10. His hips became slightly more in-
ternally rotated, his tibiae became more externally ro-
tated, and his ankles became more dorsiflexed in stance
from 6 to 13 years (Fig. 2). His foot progression angle
remained 10–15° externally rotated from 6 to 13 years of
age, bilaterally.
Analysis of his muscle-tendon lengths and lengthening

velocities of his medial hamstrings suggest his ham-
strings were consistently short at initial contact and had
a reduced lengthening velocity in swing (Fig. 2).
His EMG profiles during gait varied little over time,

with the exception of his right rectus femoris and right
medial hamstrings (see Fig. 3 for details). His rectus



Table 2 Notable passive range of motion measures for ages
6–13 years, with exceptions noted

Passive range of motion Right Left

Hip extension 10–20° flexiona 10–20° flexiona

Hip internal rotation/
external rotation

70–75°/45–70° 65–80°/40–55°b

Hip abduction 30–45° 20–40°

Popliteal angle (full knee
extension = 0°)

65–80° 60–75°

Knee extension 5–10° flexion 0–5° hyperextensionc

Ankle dorsiflexion
(knee extended)

0–10° 0–10°

Ankle dorsiflexion
(knee flexed)

5–20° 5–20°

aThere were 0° hip flexion contractures, bilaterally, at age 11 years
bExternal hip rotation on the left was limited to 25° at age 13 years
cThere was a 10° knee flexion contracture on the left at ages 6 and 7 years
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femoris had prolonged activity in midswing, and his vas-
tus lateralis and medial hamstrings had increased activity
in stance. There was premature onset of his gastrocnemius
in terminal swing and premature cessation of his tibialis
anterior in midswing, bilaterally.

Postural balance
His center of pressure path length with the eyes open
was greater than age-matched reference values [31] from
7 to 10 years of age, and again at age 13 (Fig. 1e). The
average radial displacement remained consistently greater
than two standard deviations above reference values, peak-
ing at age 10 (Fig. 1f). Our patient was unable to comply
with balance testing procedures at age 6. In general, his
postural balance measures improved from 7 to 9 years,
worsened at age 10, improved from 11 to 12 years, and
worsened again at age 13.

Energy efficiency
His EEI was WNL every year with the exception of age
10, when his EEI was more than two standard deviations
above the mean (Fig. 1g). There was no change in EEI at
age 6 versus age 13. His comfortable walking speed was
at least two standard deviations slower than age-matched
reference values [32] each year, with the exception of age
11 when his walking speed was just WNL (Fig. 1h). When
normalized to leg length, his comfortable walking speed
decreased overall from 6 to 13 years of age. In general, the
energy efficiency measures improved from 7 to 9 years,
worsened at age 10, improved from 11 to 12 years, and
worsened again at age 13.

Treatment recommendations
Based on the results of the gait evaluation, the multidis-
ciplinary team recommended BoNT-A injections to his
hamstrings and calf after the first motion analysis at age
6 years, and surgical hamstring lengthenings, as well as
physical therapy for strengthening and balance training,
annually thereafter. The reduced hamstring length and
lengthening velocity, generated from the gait kinematic
data, were most indicative of the need for hamstring
lengthenings. However, his family opted against surgical
intervention during the study period, and it was our
patient’s family and his referring physician (at an
unaffiliated hospital) who determined which treatments
were performed. The schedule of BoNT-A and casting
treatments are displayed in Table 1. Our patient’s parents
reported that he tolerated the treatments well, was
compliant in each 2-week session of post-intervention
physical therapy, and adhered to an intensive home
exercise program.

Discussion
This case report provides an 8-year longitudinal study of
a boy with spastic bilateral CP and crouch gait. The bio-
mechanical factors contributing to our patient’s crouch
gait included weak ankle plantar flexors [7], short and
spastic hamstrings [3], moderately short hip flexors [4,
5], and external rotation of the tibia [8, 9]. Our patient
had strong hip and knee extensors and mild to no knee
flexion contractures. His selective motor control was
moderately impaired on the right and mildly impaired
on the left [10]. His postural balance was impaired [11],
as measured by the average radial deviation and path
length of the center of pressure. Although hamstring
lengthening was recommended from age 7 on, he and his
family opted for non-surgical treatment through a com-
bination of BoNT-A injections and casting (Table 1), as
well as physical therapy and exercise.

Weakness
Our patient had weak plantar flexors with a 3/5 rating
on manual muscle testing from ages 6 to 8, indicating
the ability to do 1–9 single limb heel rises (whereas 20
heel rises would be considered normal, 5/5 strength). At
age 9, his plantar flexor strength decreased to 2/5, bilat-
erally, indicating an inability to perform at least one sin-
gle limb heel rise. Weak calf muscles have been shown
to correlate with crouch gait [7], and at age 10 it appeared
his weak calf muscles, in combination with an increased
BMI, resulted in a worsening crouch gait. Our patient’s
progressive weakness from 3/5 to 2/5 was perhaps a result
of the repeated BoNT-A injections to his calf [34], which
were neither indicated nor recommended by motion ana-
lysis after age 6.
Spasticity and shortened muscle-tendon length
Our patient had 10° knee flexion contractures that con-
tributed to his crouch gait. Further, the muscle-tendon



Fig. 2 Right-side kinematics based on three-dimensional gait analysis. Joint kinematics are displayed for ages 6–13 years, including representative
biomechanical analysis of medial hamstring length and lengthening velocity during gait
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length and lengthening velocity data for his medial
hamstrings (semimembranosus) suggest his hamstrings
were consistently short at initial contact and had a
reduced lengthening velocity in swing (Fig. 2). A short-
ened semimembranosus length has been shown to correl-
ate with increased knee flexion at initial contact and
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increased knee flexion in single limb stance [35], both
of which contribute to a crouch gait.

Impaired selective motor control
Our patient had moderately impaired selective motor
control on the right (SCALE score = 5/10) and mildly
impaired selective motor control on the left (SCALE
score = 8/10). Impaired selective motor control re-
sults in abnormal movement patterns during gait,
including flexion or extension synergies. During nor-
mal terminal swing, the combination of hip flexion,
knee extension, and ankle dorsiflexion require select-
ive motor control [10]. Thus, impaired selective
motor control may result in coupled movement pat-
terns involving co-activation of the quadriceps and
gastrocnemius [36], as is demonstrated by our patient
in Fig. 3. A lower SCALE score has been shown to
correlate with an impaired ability to uncouple hip
and knee movements during the swing phase of gait
[10], resulting in greater knee flexion at initial contact
[35]. Indeed, our patient had a lower SCALE score on
his right compared to his left leg, and demonstrated
greater knee flexion at initial contact on the right
than the left.

Stance-phase knee extension
Stance-phase knee extension improved from 6 to 9 years
of age, worsened at age 10, improved from 11 to 12
years, and worsened again at age 13 (Fig. 1d). The in-
creased crouch gait, as determined by maximum knee
extension in stance, at age 10 was concurrent with our
patient’s greatest BMI, reduced plantar flexor strength, di-
minished standing postural balance, slowest normalized
walking speed, and greatest walking energy expenditure.
His maximum knee extension in stance improved from 6
to 8 years of age, despite an increasing BMI. From 9 to 13
years of age, changes in his maximum knee extension in
stance paralleled changes in his BMI (Fig. 1b). Thus, it is
not clear whether BMI, in and of itself, was a critical con-
tributor to the magnitude of crouch, as noted by Rose et
al. [23]. Overall, maximum stance-phase knee extension
improved by 14–15°, bilaterally, from age 6 to age 13.



Butler et al. Journal of Medical Case Reports  (2016) 10:157 Page 8 of 10
Swing-phase knee flexion
Swing-phase peak knee flexion was WNL from 6 to 10
years of age but declined considerably at age 11 (Fig. 2).
Peak knee flexion in swing has been shown to be highly
correlated to knee flexion velocity at toe-off [37], which
is accomplished primarily through the action of the hip
flexors and gastrocnemius [38]. Thus, our patient’s flexed
hip posture and decreased plantar flexor strength likely
contributed to his reduced swing-phase peak knee flexion.
Our patient received BoNT-A to his rectus femoris at
age 11 without a resulting change in peak knee flexion
in swing.

Progression of crouch gait
Our patient’s crouch gait worsened at age 10 despite im-
provements from 6 to 9 years. His maximum stance-
phase knee extension at age 10 was 31°, bilaterally. As
noted above, this increased crouch was concurrent with
his greatest BMI and second greatest BMI-for-age per-
centile (Fig. 1), as well as 10° knee flexion contractures
(Table 2). The increased crouch was accompanied by
poor postural balance, slower than average speed when
normalized for leg length, and greater than normal EEI.
The energy expenditure deficits likely reflect the in-
creased demand that stance-phase knee flexion report-
edly places on the quadriceps: 210 % of body weight at
30° of knee flexion [12].
Our patient’s crouch gait varied from moderate to

mild, with BoNT-A and casting once a year from ages 6
to 9 years and every 6 months from 10 to 13 years,
combined with regular stretching and strengthening ex-
ercises. Non-surgical interventions for mild cases of
crouch gait typically include BoNT-A injections to the
hamstrings, pre-tibial bracing, and physical therapy for
stretching and strengthening exercises [39], whereas
soft tissue surgeries, such as hamstring or psoas length-
ening, are often recommended for moderate cases of
crouch gait [40–42]. Reports in the literature show that
surgical lengthening of the hamstrings improve maximum
knee extension in stance by an average of 11° (range 8–18°,
n = 218 limbs) [43–45]. In our patient, a combination of
regular BoNT-A with casting and physical therapy showed
similar control of his crouch gait as reported for soft tissue
surgery. Because maximum knee extension in single limb
stance has been shown to be highly correlated to knee
flexion contracture and maximum length of the semimem-
branosus [35], perhaps our patient’s history of BoNT-A
injections with casting and physical therapy were able
to halt the advancement of knee flexion contractures
and/or shortening of the semimembranosus to allow
for an overall, improved maximum stance-phase knee
extension.
However, despite an improvement in our patient’s

crouch gait at ages 11 and 12, his maximum knee
extension in stance, bilateral hip flexion contractures,
stride length, bilateral single limb support, and balance
worsened by age 13. These functional declines may be
related to the many changes, that is, physical, hormonal,
and cognitive, that occur during adolescence. For ex-
ample, between ages 12 and 13, both his height and
weight increased at a rate greater than his average
growth rate. It remains unclear how the remaining
growth of adolescence will affect his gait at skeletal
maturity.

Limitations
Limitations of this case study include the lack of object-
ive strength measures and an inability to consistently ac-
quire gait kinetics every year due to variable participant
cooperation and/or fatigue. However, when we were able
to collect kinetics, two clear patterns emerged: reduced
hip abductor moments during stance and reduced ankle
plantar flexor moments in terminal stance, bilaterally,
which were consistent with physical measures of strength
(4/5 muscle strength for hip abduction and 3/5 to 2/5
muscle strength for plantar flexors).
Further, this case study is not representative of all chil-

dren with spastic diplegia, and this patient’s response to
treatment may not extend to other patients. Our patient
was born full term, he had normal cognition, his family
was able to cover all treatment costs, and he adhered to
post-intervention rehabilitation and a general home exer-
cise program. Every brain injury associated with CP is
unique and, thus, individuals with CP represent a hetero-
geneous population. Regardless, longitudinal case studies
of individuals with CP can provide a point of reference for
clinicians to evaluate future patients and consider the
complex interaction of treatments, growth, and external
factors that influence movement in CP.

Conclusions
As this case report highlights, the assessment and treat-
ment of crouch gait is multifaceted. The motor deficits
associated with spastic cerebral palsy, including weakness,
spasticity, shortened muscle-tendon lengths, and impaired
selective motor control, were identified by our patient’s
clinical motion analyses, along with poor postural balance.
Overall, his crouch gait improved mildly with aggressive
non-operative management and a supportive family dedi-
cated to a regular home exercise program. The annual
clinical motion analyses identified changes in motor
deficits that were associated with changes in the child’s
walking pattern, suggesting that detailed clinical motion
analyses can serve to focus treatment to improve future
outcomes for children with spastic CP. When evaluating
the treatment options of surgical intervention versus annual
BoNT-A injections and casting, consideration must be
given to the effects on muscle strength, the treatment
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time, financial costs, risk of repeated general anesthesia,
rehabilitation requirements, and the patient’s cognitive
abilities.
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