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excitability, and range of motion in a patient 
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Abstract 

Background Dry needling is an intervention used by physiotherapists to manage muscle spasticity.  We report 
the effects of three sessions of dry needling on ankle plantar flexor muscle spasticity and cortical excitability 
in a patient with multiple sclerosis.

Case presentation The patient was a 40-year-old Iranian woman with an 11-year history of multiple sclerosis. The 
study outcomes were measured by the modified modified Ashworth scale, transcranial magnetic stimulation parame-
ters, and active and passive ankle range of motion. They were assessed before (T0), after three sessions of dry needling 
(T1), and at 2-week follow-up (T2). Our result showed: the modified modified Ashworth scale was improved at T2 
from, 2 to 1. The resting motor threshold decreased from 63 to 61 and 57 at T1 and T2, respectively. The single test 
motor evokes potential increased from 76.2 to 78.3. The short intracortical inhibition increased from 23.6 to 35.4 at T2. 
The intracortical facilitation increased from 52 to 76 at T2. The ankle active and passive dorsiflexion ROM increased 
~ 10° and ~ 6° at T2, respectively.

Conclusion This case study presented a patient with multiple sclerosis who underwent dry needling of ankle plantar 
flexors with severe spasticity, and highlighted the successful use of dry needling in the management of spasticity, 
ankle dorsiflexion, and cortical excitability. Further rigorous investigations are warranted, employing randomized 
controlled trials with a sufficient sample of patients with multiple sclerosis.

Trial registration IRCT20230206057343N1, registered 9 February 2023, https:// en. irct. ir/ trial/ 68454
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Introduction
Spasticity is one of the most common symptoms in 
patients with multiple sclerosis (MS) [1]. It has been 
reported that approximately 97% of patients with MS 

have lower extremity spasticity, especially in the hip flex-
ors and adductors, as well as in the knee flexors and ankle 
plantar flexors [2, 3]. Among the muscles of the lower 
extremities, several studies have shown that the triceps 
surae has an important function in balance and gait [4, 
5]. Untreated spastic calf muscles can result in functional 
limitation with pain, limited joint mobility, and gait dis-
turbance [6].

Dry needling (DN) was primarily  used for  musculo-
skeletal problems [7]. Today, it is also used to improve 
spasticity and the range of motion (ROM) in neurologi-
cal conditions such as stroke, spinal cord injury, and 
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MS [8–10]. The mechanisms by which DN can reduce 
spasticity is not completely known [11]. One possible is 
that DN regulates neuronal activity in the levels of spi-
nal cord [12] or supraspinal centers [13, 14]. Recently, 
studies have shown that DN influences brain activity 
using functional magnetic resonance imaging (fMRI) 
[15, 16]. However, the effect of DN on cortical excitabil-
ity is unclear. Cortical excitability reflects the respon-
siveness and response selectivity of cortical neurons to 
stimuli, reflects the reactivity and response specificity 
of neurons, and is therefore a fundamental aspect of 
human brain function [17]. Cortical excitability can be 
measured by transcranial magnetic stimulation (TMS) 
in several studies [18, 19]. TMS is a non-invasive tech-
nique to assess cortical changes and neuromodulation, 
especially in neurological diseases [20].

This case study uses TMS to evaluate the effects of 
three sessions of DN on cortical excitability as well 
as spasticity, and ankle range of motion (ROM) in a 
patient with relapsing–remitting MS.

Case presentation
The patient was an Iranian 40-year-old woman who had 
a history of 11 years of relapsing–remitting MS and an 
expanded disability status scale (EDSS) of 2, and was 
able to walk independently. She had not experienced 
a relapse during the past 6  months. She complained 
of spasticity and functional impairment in her right 
lower extremity despite receiving physiotherapy, exer-
cise therapy, and medication to alleviate spasticity. She 
had no history of comorbidities such as cardiovascular 
disease, diabetes, psychological problems, or familial 
diseases, and no contraindications for DN [21]. Her 
latest MRI report showed multiple plaques in cervi-
cal spinal cord and  brain. The study was approved by 
the research ethics committee of Tehran University of 
Medical Sciences. The patient has given written and 
informed consent for the publication of this report and 
any accompanying images.

Spasticity
Right leg plantar  flexor spasticity  was assessed by the 
Persian version of modified modified Ashworth scale 
(MMAS), a valid and reliable scale that rates the intensity 
of spasticity on a scale of 0–4 [22, 23]. With patient in a 
supine position and the legs extended, the physiothera-
pist passively moved the ankle from maximal plantarflex-
ion to maximal dorsiflexion during 1  second counting 
one thousand and one and scored the resistance to pas-
sive stretch. (The patient has spasticity bilaterally in lower 
limbs, but right-side spasticity is more than the left).

Passive and active ROM
Passive and active ROM of ankle dorsiflexion was meas-
ured using an ankle biplane goniometer (A Bissell Health 
Care, model 7524, USA) in the supine position, with 
the  knee extended. Maximum passive ROM (PROM) 
was assessed by physiotherapist while passively  mov-
ing the  ankle to  maximum dorsiflexion. Active ROM 
(AROM) was measured while the patient actively per-
formed the dorsi flexion [24].

Cortical excitability
Cortical excitability was assessed using motor-
evoked potential (MEP), short interval intracortical inhi-
bition (SICI), and intracortical facilitation (ICF). MEP 
represents the global excitability of the cortex, spinal, 
and corticospinal pathways [25]. SICI and ICF are well-
known paired-pulse TMS that are used for investigating 
intracortical circuits in the motor cortex [26]. The rest-
ing motor threshold (RMT), expressed as a percentage of 
maximal stimulus output (%MSO), was measured using 
MagPro (MAG venture TMS, Denmark).  The stimula-
tion  target location was fine-tuned for the patient to 
stimulate the right plantar muscle hotspot by an 8-shaped 
coil (coil head dimensions: 170 × 113 × 17.34 mm) defined 
as the optimal location for MEP in the contralateral spas-
tic plantar flexor at the lowest stimulation intensity. MEP 
was recorded from soleus muscle electromyography 
(EMG) recordings (Seniam.org). The active and reference 
electrodes (20 mm apart) were placed on the main soleus 
muscle bulk near the motor point of the soleus muscle, 
located between the medial condyle of the femur and the 
medial malleolus. The electrodes were positioned at the 
ankle (around the medial malleolus (Fig.  1). The RMT 
was defined as the minimum TMS intensity required 
to produce detectable MEP amplitudes above 50  mv 
from background EMG in at least five out of ten trials. 
SICI refers to the phenomenon in which a subthreshold 
conditioning stimulus (CS) suppresses MEPs evoked by 
a subsequent suprathreshold test stimulus (TS) with a 
3-ms inter-stimulus interval (ISI). ICF is a phenomenon 
of increased cortical excitability induced by conditioning 
stimuli and was assessed by test stimuli in a conditioning 
test paradigm. It was generated when a subthreshold CS 
occurs and stimulates MEPs evoked by a suprathreshold 
TS with an ISI of 13 ms (msec).

Intervention
We used a 0.3 mm × 50 mm (Korea) disposable stainless 
steel needle. A fast-in-fast-out technique was followed, 
and heads of gastrocnemius and soleus muscles were 
needled each for 1 minute (total 3 minutes). One DN ses-
sion per week for 3 weeks was performed, and follow-up 
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was carried out 2 weeks later (Fig. 2). For the gastrocne-
mius and soleus muscle, a line from the popliteal crease 
to the heel was drawn. This line was divided into three 
equal parts, and for the medial head of gastrocnemius 
about 2 cm medial from the middle of the proximal seg-
ment and about 2  cm lateral for the medial and lateral 
heads of gastrocnemius were needled [24]. For the soleus 
muscle, the middle segment of the line was also divided 
into three parts, and the needle was inserted about 
2–3 cm lateral in the lower third part of the middle seg-
ment [27] (Fig. 3).

Results
The spasticity of ankle plantar flexors decreased from 2 
to 1 at T1 and remained unchanged at T2. Active dor-
siflexion ROM increased after DN from 10° to 20° and 
passive dorsiflexion increased from 12° to 18°. The RMT 
decreased from 63 to 61 at T1 and 57 at T2. The changes 
in SICI were from 23.6 at T0 to 67.9 at T1 and 35.4 at 
T2. The ICF increased from 52 at T0 to 137 at T1 and 
76 at T2. Table 1 presents the results before and after the 
intervention.

Fig. 1 Electromyography electrodes for soleus muscle motor evoked 
potential record

Fig. 2 Timeline of interventions and assessments

Fig. 3 Points for dry needling of the gastrocnemius (A) and soleus (B)
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Discussion
In this case study involving a patient with MS, after three 
DN sessions targeting ankle plantar flexors, clinical and 
TMS measures improved. There was a decrease in RMT, 
accompanied by an increase in MEP amplitude. Changes 
in ICF indicated an increase in intracortical facilitation. 
Notably, the heightened cortical excitability persisted for 
2 weeks following DN. These findings may be explained 
by the dual impact of DN, which excites the motor cortex 
through both peripheral sensory inputs and intracortical 
mechanisms [28, 29]. The DN, offering somatosensory 
conditioning stimulus, can generate excitability in the 
motor cortex through direct impact or cutaneous input 
from the spastic plantar flexor muscles, manifesting at 
short latency [28–30]. There is a possibility that soma-
tosensory input from DN manipulation of spastic tissue 
contributes to an elevation in glutamate receptor concen-
tration within the motor cortex, consequently augment-
ing ICF [31]. These results may prompt the hypothesis 
that heightened cortical excitability might play a role in 
reducing spasticity as reflected in significant improve-
ment of spasticity in this patient with MS [32]. Our 
results showed the increase in ICF and MEP, and the 
decrease in RMT that indicated the increases in cortical 
excitability. Furthermore, SICI increased during the three 
sessions. The ICF/SICI ratio, as a parameter of excitabil-
ity, also did not change noticeably. To justify these results, 
the following explanations should be noted. (1) The lower 
limb motor area in brain stimulation is very tiny in com-
parison with the upper extremity [33], so determining 
SICI (as an inhibition parameter with small amounts) is 
more difficult than usual studies. (2) Stimulation intensity 
and frequency can influence the ICF/SICI ratio parame-
ter [34]. (3) Patient fatigue, as the most frequent problem 
in patients with MS, can influence increased SICI levels 
[35]. In the spasticity results, the reduction in spasticity 
observed in this MS case, in line with previous reports, 
validates the positive impact of DN on spasticity [9, 36, 

37]. Improvements in ankle active and passive flexion 
ROM may be attributed to improvements in both spas-
ticity and cortical excitability.

Conclusion
This case study presented a patient with MS who under-
went DN of ankle plantar flexors with severe spasticity, 
and highlighted the successful use of DN in the manage-
ment of spasticity, ankle dorsiflexion, and cortical excit-
ability. Further rigorous investigations are warranted, 
employing randomized controlled trials with a sufficient 
sample of patients with MS.

Abbreviations
MS  Multiple sclerosis
DN  Dry needling
ROM  Range of motion
SICI  Short interval intracortical inhibition
ICF  Intracortical facilitation
RMT  Rest motor threshold
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